Is reduced graphene oxide favorable for nonprecious metal oxygen-reduction catalysts?

نویسندگان

  • Wei Gao
  • Dana Havas
  • Shiva Gupta
  • Qin Pan
  • Nanfei He
  • Hanguang Zhang
  • Hsing-Lin Wang
  • Gang Wu
چکیده

Reduced graphene oxide (rGO), as a newly emerged carbon material, has attracted great attention concerning its applications for electrocatalysts. Presently, there are mixed opinions regarding the advantages to using rGO as a support for preparing nonprecious metal catalysts for the oxygen reduction reaction (ORR). The primary goal of this work is to determine whether rGO would be favorable for nonprecious metal catalysis of oxygen reduction or not. In the case of Fe-free catalysts, when polyaniline (PANI) was used as nitrogen/carbon precursor, the PANI-rGO catalyst is superior to the PANI-Ketjenblack (KJ) carbon black catalyst in terms of ORR activity and H2O2 yield. When comparing the ORR activity of PANI-Fe-rGO to the traditional PANI-Fe-KJ, in more challenging acidic electrolyte, PANI-Fe-rGO performed no better than PANI-Fe-KJ. However, rGO does indeed enhance stability of the FeeNeC catalyst in acidic media. In addition, in an alkaline electrolyte, ORR activity was significantly improved when using rGO in comparison to the KJ-supported FeeNeC catalysts. Based on detailed comparisons of structures, morphologies, and reaction kinetics, the traditional KJ support with dominant microporous is able to accommodate more FeNx moieties that are crucial for the ORR in acid. Oppositely, the richness of nitrogen-doped graphene edge sites provided by rGO facilitates the ORR in the alkaline electrolyte. © 2016 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metal (Ni, Co)-Metal Oxides/Graphene Nanocomposites as Multifunctional Electrocatalysts

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 5799 wileyonlinelibrary.com issues associated with energy security and environmental pollution. [ 1–5 ] Oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) are the most crucial electrochemical reactions to realize energy storage and conversion in these technologies. Although Pt-, Ir-, and Ru-ba...

متن کامل

Electrodeposition of platinum nanoparticles on reduced graphene oxide as an efficient catalyst for oxygen reduction reaction

Reduced graphene oxide film was synthesized on a glassy carbon electrode by electro reduction of graphene oxide powders in aqueous solution. Then platinum nano particles were deposited on reduced graphene oxide film that was deposited on the glassy carbon electrode via electro reduction of platinum salt. The Physical morphology of the platinum on reduced graphene oxide film was evaluated by sca...

متن کامل

Shui 1..7

D ow nladed ro The availability of low-cost, efficient, and durable catalysts for oxygen reduction reaction (ORR) is a prerequisite for commercialization of the fuel cell technology. Along with intensive research efforts of more than half a century in developing nonprecious metal catalysts (NPMCs) to replace the expensive and scarce platinum-based catalysts, a new class of carbon-based, low-cos...

متن کامل

N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells

The availability of low-cost, efficient, and durable catalysts for oxygen reduction reaction (ORR) is a prerequisite for commercialization of the fuel cell technology. Along with intensive research efforts of more than half a century in developing nonprecious metal catalysts (NPMCs) to replace the expensive and scarce platinum-based catalysts, a new class of carbon-based, low-cost, metal-free O...

متن کامل

One –step synthesis of PdCo alloy nanoparticles decorated on reduced grahene oxide as an Electro-catalyst for Oxygen Reduction Reaction in Passive Direct Methanol Fuel Cells

We report a Pd-Co (3:1)/graphene oxide (Pd3Co /GO) catalyst through a one-step strategy. GO is synthesized from graphite electrodes using ionic liquid-assisted electrochemical exfoliation. Controllable GO-supported Pd3Co electrocatalystis then was reduced by ethylene glycol as a stabilizing agent to prepare highly dispersed PdCo nanoparticles on carbon graphene oxide to be used as oxygen reduct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016